President’s Message:

Ben Tintinger, AIA, President of AIA Montana

It seems like only a few years ago we were all bemoaning the lack of work and state of architecture in Montana. What a difference those few years make. It’s amazing to listen to architects from around the State and the region these days. Hearing about and seeing the amazing projects throughout the State is very encouraging. A look through AIA Montana’s website just gives a sampling of the stunning work by our members. Take a drive through Montana and you’ll find, not only in our larger communities, but also in the far reaches and small towns, that we are at a point in time that will define a historical marker and renaissance of a sort for architecture in our state. Fifty years from now, these works will be some of our best examples of the continuing architectural history of Montana.

This is a trend that I hope continues. I believe the reason for this rebirth is that our state’s facilities have just reached an age that duct tape just doesn’t work anymore. While buildings are always being constructed, there are times, like now, that booms in construction and development occurred as communities grow, experienced disasters, or just followed suit of their neighbors. These booms mean that many of our buildings are of a similar vintage and in various stages of ‘deferred maintenance’.

The schools across our state are a good example of the renaissance taking place. Nearly every community is taking a good look at their educational facilities and support structures and realizing the time has come to upgrade or replace. As educational delivery, learning styles and technology has changed, our facilities must adapt. As bonds are passed and new schools are built, this ten to fifteen-year period will be that important architectural historical marker in Montana.

With all the new development across the State, we also need to be diligent about protecting those previous points in time and restoring what architecture we can. The Montana Preservation Alliance has played an instrumental role in facilitating work. For the past thirty years they have worked to document Montana’s great examples of architecture and provide a resource for architects and owners in navigating preservation. For the past two years, with support much from AIA Montana, the Montana Preservation Alliance has been contributing to a nationwide effort led by the Society for Architectural History (SAH) to compile an Archipedia, an online compendium of outstanding architecture in the United States. Each state will be featured with 100 entries and the first 50 Montana properties are already being uploaded to the website. Some entries are already viewable at http://sah-archipedia.org.

As we all finish up the year and are looking for a place to put all those profits, take a look at the Montana Preservation Alliance and consider how they support our profession, and eventually, our works. In the meantime, look up from your desk and breath. Take some time away from the office this holiday season and relax. Get ready and recharged for another great year!

It has been a pleasure serving as President this year. My six years on the Board have flown by and I am extremely grateful for all the folks that I’ve worked with (especially our executive director, Connie Dempster) and I look forward to continuing to be involved as Past President.

Merry Christmas and Happy Holidays!
Am I Breaking the Law by Providing My Employees with Comp Time?

By the AIA Risk Management Program, November 2, 2017

It seems simple enough: If an employee works five hours of overtime in a week, rather than paying the overtime rate an employer may tell their employee to take a day of “comp time” the next week. Comp time even feels like a win-win: The employee enjoys some well-deserved rest after a few long days of work, and the employer avoids paying the earned overtime rate.

Unfortunately, it is not that simple; this not-so-uncommon approach to earned overtime violates the Fair Labor Standards Act (FLSA). Accordingly, architecture firms should avoid using comp time as compensation for overtime work.

The United States Department of Labor (DOL) formally defines this practice as compensatory time, describing it as "hours during which an employee is not working, which are not counted as hours worked during the applicable workweek or other work period for purposes of overtime compensation, and for which the employee is compensated at the employee's regular rate." The DOL, however, does not permit the use of comp time for employees in private-sector employment. Rather, use of comp time in lieu of overtime pay is only available "to a public agency that is a state, a political subdivision of a state, or an interstate governmental agency." The use by a public agency is even limited to instances where there is a collective bargaining agreement in place or, in the absence of a collective bargaining agreement, where there is an agreement with the employee in place before overtime work is performed.

Accordingly, comp time as a means to avoid paying non-exempt employees overtime in the private sector is not permitted by the Department of Labor and is against the law. All non-exempt employees in the private sector must be paid for overtime hours worked.

While pure comp time is not available in the private sector, something akin to comp time is permissible for exempt employees in the private sector. A private employer may offer time off to exempt employees as a reward for exemplary effort. In doing so, however, private sector employers must be careful not to violate the FLSA. Many experts recommend against any hour for hour measurement for time off as it suggests compensation for overtime worked. Further, because "compensatory time" is a legal term defined in the FLSA and is only permitted in the public sector, architectural firms should avoid using the term when offering time off to exempt employees as a reward. Many firms describe the policy as extra-days off, flexible time off, or administrative paid time off.

Because only exempt employees can be offered additional time off for exemplary work, it is important to understand the circumstances under which an employee can be considered exempt. In most instances, being considered exempt under the FLSA means that the employee is being paid a wage that meets the DOL-prescribed salary threshold and that the employee meets one of the DOL-exempt job classifications. For more information on determining whether your employee is exempt under FLSA, please read our article on overtime pay.

Additionally, if you choose to implement a system of rewarding exempt employees with time off for extra effort, it is strongly suggested that you implement a policy that governs how and when such time off will be offered. This will help ensure consistent and fair application of the policy.

It should also be noted that the United States House of Representatives recently passed the Working Families Flexibility Act of 2017 (H.R. 1180), which would expand the right to use comp time to the private sector. Before it becomes law, however, the Senate must also pass the bill. As of the date of this writing, while the bill was introduced to the Senate on April 3, 2017, the Senate has yet to fully take the Working Families Flexibility Act of 2017 up for deliberations.

AIA has provided this article for general informational purposes only. The information provided is not legal opinion or legal advice.
PARKSIDE INFILL

Project Description:
On an infill lot in Northeast Bozeman adjacent to Beall Park, the conventional quality over quantity paradigm has been put to the test. The property, which once contained one sub-standard and deteriorating house, is now prepared for two separate homes, including the Parkside Infill. While the lot has not yet been subdivided, the design was conceived with the possibility of increasing the development density and creating a more sustainable and responsible use of the land - a possibility that hinges on evolving progressive code changes.

Program Requirements:
The initial program consisted of a three-bedroom house, two car garage, sprinter vanport, guest house, and a detached shower/sauna. The small footprint and highly efficient site layout allowed for the entire program to be arranged on half of the original lot, while leaving the remainder of the lot open for a future infill project.

Sustainability Goals:
This project prioritizes sustainability in a variety of fashions, with both passive and active design strategies. The Parkside Infill is fit with a highly insulated building envelope of continuous exterior rigid insulation and spray foam, which greatly reduces unwanted air infiltration and provides high thermal resistance. Within the wall assembly, high quality triple pane fenestration keeps the home sealed while allowing residents the freedom to open their home to the outdoors on all levels, taking advantage of both passive ventilation and the benefits of the high diurnal temperature swings to decrease reliance on mechanical systems. Solar angles have been given careful consideration to provide ample daylighting and views while limiting situations of glare and unwanted solar heat gain, which has been achieved through window placement and attached louver systems. A considerable 14 kW photovoltaic array has been installed on three roof slopes with abundant exposure, and is accompanied by a solar hot water system to further increase energy efficiency.

The siting and landscaping of the Parkside Infill also contribute to this home’s sustainability. Carefully planned greenspace and use of native plant varieties reduce the water needs on-site, and because of the adjacent Beall Park, yard space could be minimized.

Design Solutions:
The Parkside Infill consists of simple and classic forms clad in cedar siding, which provides a natural and warm texture, tactility, and scale to the home. The project was designed to fit within and respond to the eclectic character of Northeast Bozeman, and provides a contemporary and sustainable take on traditional western single-family architecture. A small footprint and the efficient use of space lead to an open floor plan that is organized to provide a range of public and private spaces. These spaces allow residents the opportunity to engage with park-users and neighbors outside on two levels, or to retreat into the quiet solitude of their home and sheltered courtyard. An emphasis has been placed on blending indoor and outdoor spaces to create a seamless and comfortable transition between the interior and exterior living spaces.
YELLLOWSTONE HALL

Project Description: The Architecture Team collaborated with Montana State University on the design and completion of Yellowstone Hall, a 400 bed freshman residence hall that opened in the summer of 2016. The three wing, four story building houses freshman students in ten 40-bed “communities” on the west side of campus near Roskie Hall and the Hedges Complex. The location and siting of the building creates a “backyard” for all residents living on campus. Outdoor living space includes a climbing rock, outdoor seating and study space, and a large turf area for resident use. The building and site amenities connect campus to the intramural fields, which sits to the west, across 15th Avenue.

The new residence hall was designed to provide students with a number of different public and private living areas throughout the building. Both active and quiet lounges are located in each community, while each floor also shares a large living room at the core of the three wing configuration. Yellowstone Hall’s living room is a vibrant lively space for residents to meet before class or engage in a game of pool and provides home-like amenities to make students feel like they are not far from home. The space opens to a large patio area and is both visually and physically connected to Yellowstone’s backyard on Mandeville Creek. Student input was of the utmost importance for MSU. To engage them throughout the design process, a student-led committee was assembled that included RDs, RAs, and students from various grade levels. This solicited a wide variety of feedback about what was desired in a new residence hall, from the end users themselves.

Program Requirements: MSU’s mission is to educate and serve communities by integrating learning, discovery and engagement. Yellowstone Hall was imagined as a vibrant hub where these tenets intersect, and inspiring students to interact and establish community with their peers was key. 10 distinct student neighborhoods were created throughout the building, each with its own RA, shared bathrooms, and community study/lounge space. Additionally, each floor within Yellowstone features a central “hub” that serves to connect these residential communities to one another. A large commons area on the first floor provides additional opportunities for students to connect, and features a community kitchen and various lounge spaces. This strategic layout not only facilitates interaction within their respective neighborhoods, but encourages students to build connections across communities, creating a rich fabric of student engagement.

Sustainability Goals: MSU stakeholders were passionate about solar access and daylighting. The shape of the building was largely driven by ensuring solar access on all sides. The elongated east/west form creates a “sun mitt” to enhance solar gain during the colder seasons. Solar panels heat water for the building, and sun shading mitigates summer sun. Since opening, Yellowstone has become a benchmark for sustainable practices across campus. The building is LEED Gold certified.

Design Solutions: Yellowstone Hall’s unique shape is a derivative of different contextual factors, many of which support open spaces and pedestrian connections to the site. A portion of the building is raised above a first floor pedestrian pass through, linking the rest of campus to the intramural fields and Roskie Beach recreation area. The serpentine form of the hall leads to the adjacent housing/dining complex, creating a strong bond between the two. The building footprint and site were designed to encourage and promote an outdoor destination for the larger student housing neighborhood beyond Yellowstone, creating a “backyard” for more than 2,200 students living in the adjacent halls. Yellowstone Hall exemplifies the university’s commitment to strong, modern architecture while using materials common to its context to integrate with its surroundings. The brick façade is grounded in the masonry found throughout campus, while the metal panel colors emulate the surrounding natural landscape. Interior finishes and wayfinding graphics are derived from ecosystems found in Montana. As a result, students living in Yellowstone establish their own sense of place while still feeling part of the rest of campus, as well as the Bozeman community.
THE PALISADE BUILDING

Project Description:
The Palisade is a one story building for commercial rental use. This new building is part of the PUD development. It has 6,500 square feet with ceiling heights of 22’-0”. The footprint is 97’-6” x 77’-9”. The only two materials used on the façade are brick and corrugated metal. The façade is enhanced by a glass storefront system with aluminum sun devices. The structure is a steel system on a 5’-0” module with metal studs and open steel trusses.

Program Requirements:
The program called for 6,500 square feet of commercial rental space with 22’-0” ceilings. The flexible design allows for two, three or four tenants and includes four entrances. The east and west walls are transparent glass with sun shade devices. The north and south façades are solid corrugated metal.

Sustainability Goals:
Though the client did not want to pursue LEED certification, from the beginning we followed all the categories for those criteria: Site design, water efficiency, energy, materials, and the indoor environment. The building conforms to the 2012 Energy Conservation Code. The most important element was the orientation of the building and the large façades with low-e glass, which allow for maximum daylight. For climate control and energy efficiency, we added window treatments and sun devices. We worked with our LEED-certified consultant, especially in designing the four independent mechanical units. Wherever possible, we used local resources and materials. We worked closely with our contractor to control the development of the construction site and reduce pollution and noise, and efficiently organize the site.

Design Solutions:
The primary design intention for the Palisade was to create a simple, minimalistic structure with a single form. The building is visually open to the east and west. Both sides offer handicap access, and the west façade includes a handicap ramp. Because it is a single story building and the surrounding future development allows for two-story buildings, scale is very important. We designed the glass opening on both sides, giving the space enough daylight and a visually aggressive design of two lines of aluminum sun devices which lend character to the building. Because the roof will be visible from the other buildings, we designed the roof with the same attention to detail as the front façades. The recessed walls on the north and south façades are dedicated to ladder access to the roof and the electrical panels.
AIA Montana News

AIA Montana 2017 Design Award - MERIT

NORTHSIDE TOWNHOUSES

Project Description:
These modern townhomes are located on a unique infill site in Missoula's mixed-use Northside Neighborhood. The project takes scale cues from the community brewery and other railroad era structures down the street. By increasing the site density in a sensitive and appealing way, the project promotes urban sustainability principles of walkability, public transportation access, and reduced infrastructure and sprawl. The site is in close proximity to many local business and bus stops. Additionally, a pedestrian bridge that crosses the railroad tracks to downtown is across the street.

Prior to construction, the site was cleaned up and remediated to remove hazardous materials and debris from a previous structure fire. Now, native, low-water plantings and decomposed granite reduce water use as well as site runoff. Best of all, the occupants have a low maintenance, beautiful landscaping to enjoy.

Every space was carefully considered in order to give the occupants a home that feels much bigger than its small square footage suggests. The living spaces are set a floor above garage, utility, and entry space. This configuration allows for large windows as well as privacy from the street through a change in elevation. The floor-to-ceiling windows provide a connection to the outdoors and plenty of natural daylight. Shading devices were placed on southern windows to reduce overheating in summer while providing solar gain during the winter months. Locally reclaimed wood floors from the recently deconstructed Salvation Army building provide a warm, homey character and contrast with the clean lines of the design.

Roof decks increase the outdoor space and provide outstanding views of the nearby mountains and downtown. The top two floors are larger than the bottom level, providing covered outdoor space at ground level on both the front and rear of the buildings. Double door garages serve dual functions as vehicle storage and additional outdoor living space.

The true measure of success for this project is that each townhome sold before construction was completed at a comparatively high price per square foot. This project demonstrates that sustainable infill site strategies and smaller residences with more attention to design and detail can compete and thrive as a development model in the local Montana housing markets.
Vendors & Sponsors at the 2017 Fall Conference

AIA Montana would like to thank the following vendors for showing at the 2017 Fall Conference:

- **Earth Elements**

 www.earthelements.com

- **GRAPHISOFT**

 www.graphisoft.com

- **Sierra Pacific Windows**

 www.sierrapacificwindows.com

- **Glo European Windows**

 www.glowindows.com

- **Chelsea Building Products**

 www.everlastsiding.com

- **VaproShield**

 www.vaproshield.com

- **Pella Windows & Doors**

 www.pellaMT.com

- **Big Sky Insulations, Inc.**

 www.bigskycontrol.com

- **PPG Architectural Coatings**

 www.ppgpro.com

- **Minot Builders Supply**

 www.minotbuilderssupply.com

- **American Hydrotech, Inc.**

 www.hydrotechusa.com

- **BASF**

 www.basf.com

- **TriJack Architectural Products**

 www.trijack.com

- **Huber Engineered Wood**

 www.huberwood.com

- **Sierra Pacific Windows**

 www.sierrapacificwindows.com

A special thanks goes out to the following groups for other conference sponsorships at the Fall Conference:

- Boise Cascade for lanyards
- Sierra Pacific for tablets & pens
- MSU—School of Architecture for hosting the Thursday morning break
- Stahly Engineering for hosting the Thursday afternoon break
- Sierra Pacific for buses to Awards Banquet
- Martel Construction for hosting the reception at the Awards Banquet
- Vendors for hosting Friday’s breaks, lunch and CASH RAFFLES!

DATE SAVES:

2018 Annual Fall Conference
September 27-28
Heritage Inn
Great Falls, Montana

THANK YOU!
Laramie County Community College Flexible Technology Building

Project Description
The greater Cheyenne, Wyoming area is experiencing rapid growth in a number of industries that require specialized training. Laramie County Community College is uniquely positioned to provide education in these areas of oil, gas, energy related fields, small and large engine repair, manufacturing, and construction related fields like HVAC. The State of Wyoming and LCCC is keeping pace with the growth in these industries with a new versatile facility, the Flexible Technology Building, to accommodate shifting programs over time as the market dictates.

The Flex Tech is a 48,700 sf facility for LCCC's current Diesel Tech, Welding Tech, and Engineering Tech programs and complementary classroom spaces. Additional capacity is designed into the program to allow for future, unpredictable growth of not only these programs, but also to accommodate future tech fields not yet foreseen. Therefore, maximum flexibility within the building and growth for future phases was a key guiding principle for the design.

Learning on Display
The Flex Tech building occupies a significant site within the LCCC Campus. It is both the east terminus of the central mall linking the academic core as well as the first impression of the college for the community. The east façade, a curtain wall of glass housing the "Flex Tech Space", is illuminated at night to showcase the efforts of LCCC Career Tech students and put "learning on display". The space sets the tone to showcase a professional tech environment, engage industry partners, recruit students, and can also be used for classrooms, conferences, or community events and receptions.

To foster greater interdisciplinary interaction and collaboration, the concept of putting “learning on display” also influenced transparency in the learning environment. Visual connections between classrooms and shop space, offices and shops, project areas and classrooms, and project areas and break out spaces expose students both inside and outside the Tech programs to the possibilities of the industry. This transparency also assists supervision and creates a safer Tech learning environment. Wide corridors with comfortable seating, “Eddies” next to interesting spaces, and areas outside faculty offices collect students to further provoke collaboration.

Ultimate Flexibility
Accommodating change over time is a design solution and key sustainable strategy for the Flex Tech. A modular approach to the structural system and exterior cladding make strategies for expansion easier. Tilt up concrete panels can be removed for future growth. Lightweight, recyclable metal cladding used in modular lengths consistent with the building structural grid module were chosen for ease of disassembly and re-use as the building changes in the future.

In addition to the “Flex Tech Space”, each lab and classroom are thoughtfully designed for interchangeability and future program needs. Classrooms have moveable furniture and can be configured as a drafting studio one day, and into a lecture style learning environment or a conference room the next day. While the welding program does not require the through movement of semi-trucks, the space could be converted in the future to house another automotive program or program requiring large bays and overhead space.
ST ENGINEERING 2.0 - TIPPING ADDITION

Project Description:
ST Engineering 2.0 is a small base-isolated building on an infill lot in Berkeley, California, and is located one mile away from the Hayward Fault. Our client, who is also our structural engineer, occupies the top two floors of the adjacent three-story corner building to the north, which we designed for him in 1994. Having outgrown their original building, which we call ST Engineering 1.0, they approached us to design a new building for them on the infill lot next door. Feeling the original building was well suited to their needs, they were keen for the two buildings to share the same architecture DNA, and to function as a whole. Whereas the goal with ST Engineering 1.0 had been to foreground sustainability through first principles such as sunshades, day lighting, and natural ventilation, the goal with ST 2.0 was to focus on sustainability through structural resilience.

Program Requirements:
1st Floor: shell and core of brewpub expansion
2nd Floor and 3rd Floor: shell, core, and interior expansion of the office space

Sustainability Goals:
Designed to last for 100 years, the building is equipped with a base-isolation system that enables the building to withstand a large seismic event with minimal damage. Materials, such as copper siding, were accordingly chosen for their longevity. Strategies of natural ventilation, mechanically-assisted night cooling, and thermal mass were also employed to significantly minimize the operating load for heating and cooling. Bicycle parking and showers are provided to encourage staff to bike to work.

Design Solutions:
Our approach was to visually highlight the seismic condition in the East Bay. Because the site was located only a mile away from the Hayward fault, the decision was made early on that the building would be base-isolated. Instead of hiding the base isolators, as typically done, we made them a fundamental visual component by splicing them visibly into columns to underscore the unique mechanics of the building. Six of these columns cantilever out of the structural slab and support the top two “floating” office floors. An oversized bifold on the first floor opens the pub up to the sidewalk, further enhancing the “floating” look of the solid upper stories.

At the ground floor entry, one of these hybrid columns was pushed out towards the street. The isolation plane upon which the building surfaces are designed to slide was painted yellow. At the second-floor courtyard, where the engineers enter the office, a yellow grate covers the moat’s 24” crumple zone, and gangways bridge the entries. Through these combined gestures, the seismic system becomes transparent and visually accessible to the public: the engineer’s clients, passerby, and the Berkeley students that frequent the brewpub expansion known as the “Richter Room.”
The AIA Mission Statement:
The American Institute of Architects is the voice of the architecture profession dedicated to serving its members, advancing their values and improving the quality of the built environment. Through a culture of innovation, the American Institute of Architects empowers its members and inspires creation of a better built environment.

2017 EXECUTIVE BOARD

Bennet P. Tintinger, President
ten@mosaicarch.com

Shane Jacobs, President Elect
shanej@ctagroup.com

Sophia A. Sparklin, Secretary/Treasurer
sophia@spark-architecture.com

Justin Tollefson, Senior Director
justin@pearsondesigngroup.com

Dennie Stephenson, Junior Director
dennie@architectonis.com

Vincent D. Gavin, Incoming Director
vince@gavin-hanks.com

Ali Martin, Assoc AIA Director
alim@architects-sma.com

Tad Tsukamoto, Immediate Past President
ttsukamoto@intrinsikarchitecture.com

Montana Chapter of the American Institute of Architects was founded on June 4, 1921.

From the AIA Montana Office

Just a few items for your consideration:

1. As the year starts to draw to a close, take a moment to check your transcript—you can do this at the AIA National website: https://www.aia.org/continuing-education. This is more important than ever now the Montana requires 12 HSW continuing education requirements per year to maintain your license. If you need more units, links have been provided at the AIA Montana website to AIAU and www.ronblank.com. Both sources are FREE and will be reported directly to your transcript upon course completion.

2. You should be receiving your issue of the Montana Architect magazine any day now. For those of you that use your office address for AIA items, please let your office manager know you are expecting the issue and it is not junk just because many of the same magazine arrive.

3. If you firm is looking to post a career opportunity with AIA Montana, here are the steps: Create a pdf of the position or positions. Share with the AIA Montana office indicating whether you want it posted to the AIA MT website or shared in an email blast to the membership or both. With this, we need the link to your website where the same information is posted. I will post to the website as soon as possible and share with the next viable email blast to the membership.

I would like to take a moment to thank all of you for making me one of you when you bestowed Honorary AIA MT member designation for me at this year’s annual Fall Conference. WOW! Such an honor and so appreciated!

Please note that the AIA Montana Office will close on December 22 and reopen on January 2.

Merry Christmas &
Happy New Years!

Connie Dempster, Hon AIA MT